Tag Archives: cricket cercal system

Cricket on the Hearth: The cercal system and insect innervation – Plasticity.

Finished the pre-print of this paper. A pdf copy is here or go to Short Labs and enter the Cricket Cercal System course and go to Review Essays. The paper there is annotated with a glossary. There is a registration to use the Short Labs but it is free.

I plan to submit this to The Journal of Theoretical Biology in a week or so. Will see what happens.

Next I’m going to look more closely at predation and at the question: What is Shape?


Agrawal, A.A., 2001. Phenotypic Plasticity in the Interactions and Evolution of Species. Science, 294(5541), pp.321–326. Available at: http://www.sciencemag.org/content/294/5541/321 [Accessed January 5, 2013].
Arnold, S.J., 1983. Morphology, Performance and Fitness. American Zoologist, 23(2), pp.347–361. Available at: http://icb.oxfordjournals.org/content/23/2/347 [Accessed January 5, 2013].
Auld, J.R., Agrawal, A.A. & Relyea, R.A., 2009. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), pp.503–511. Available at: http://libra.msra.cn/Publication/37771469/re-evaluating-the-costs-and-limits-of-adaptive-phenotypic-plasticity [Accessed January 5, 2013].
Benard, M.F., 2004. Predator-Induced Phenotypic Plasticity in Organisms with Complex Life Histories. Annual Review of Ecology, Evolution, and Systematics, 35(1), pp.651–673. Available at: http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.35.021004.112426 [Accessed January 5, 2013].
Bentley, D., 1975. Single gene cricket mutations: effects on behavior, sensilla, sensory neurons, and identified interneurons. Science, 187(4178), pp.760–764. Available at: http://europepmc.org/abstract/MED/1114323 [Accessed January 5, 2013].
Breukera, C.J., Patterson, J.S. & Klingenberg, C.P., 2006. A Single Basis for Developmental Buffering of Drosophila Wing Shape. PLoS ONE, 1(1), p.e7. Available at: http://dx.doi.org/10.1371/journal.pone.0000007 [Accessed January 5, 2013].
Carroll, S.P. et al., 2007. Evolution on ecological time-scales. Functional Ecology, 21(3), pp.387–393. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2007.01289.x/abstract [Accessed January 5, 2013].
Comer, C.M. & Robertson, R.M., 2001. Identified nerve cells and insect behavior. Progress in Neurobiology, 63(4), pp.409–439. Available at: http://www.sciencedirect.com/science/article/pii/S0301008200000514 [Accessed January 5, 2013].
Czesak, M.E., Fox, C.W. & Wolf, J.B., 2006. Experimental evolution of phenotypic plasticity: how predictive are cross-environment genetic correlations? The American naturalist, 168(3), pp.323–335. Available at: http://www.jstor.org/discover/10.1086/506919?uid=3739856&uid=2&uid=4&uid=3739256&sid=21101498709683.
Dangles, O., Casas, J. & Coolen, I., 2006. Textbook cricket goes to the field: the ecological scene of the neuroethological play. Journal of Experimental Biology, 209(3), pp.393–398. Available at: http://jeb.biologists.org/content/209/3/393 [Accessed January 5, 2013].
Dangles, O. et al., 2009. Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. The Quarterly review of biology, 84(1), pp.51–74. Available at: http://www.jstor.org/stable/10.1086/596463.
Dangles, O. et al., 2005. Variation in morphology and performance of predator-sensing system in wild cricket populations. The Journal of Experimental Biology, 208(3), pp.461–468. Available at: http://jeb.biologists.org/content/208/3/461 [Accessed January 5, 2013].
Dangles, O. et al., 2007. Escape performance decreases during ontogeny in wild crickets. Journal of Experimental Biology, 210(18), pp.3165–3170. Available at: http://jeb.biologists.org/content/210/18/3165 [Accessed January 5, 2013].
Dangles, O. et al., 2006. Ontogeny of air-motion sensing in cricket. Journal of Experimental Biology, 209(21), pp.4363–4370. Available at: http://jeb.biologists.org/content/209/21/4363 [Accessed January 5, 2013].
Dangles, O. et al., 2008. Relative contributions of organ shape and receptor arrangement to the design of cricket’s cercal system. Journal of Comparative Physiology A, 194(7), pp.653–663. Available at: http://link.springer.com/article/10.1007/s00359-008-0339-x [Accessed January 5, 2013].
Darwin, C., 1859. On the Origin of Species By Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life, Available at: http://www.gutenberg.org/ebooks/1228 [Accessed January 5, 2013].
Dennis, S.R. et al., 2011. Phenotypic convergence along a gradient of predation risk. Proceedings of the Royal Society B: Biological Sciences, 278(1712), pp.1687–1696. Available at: http://rspb.royalsocietypublishing.org/content/278/1712/1687 [Accessed January 5, 2013].
Desutter-Grandcolas, L., 1998. Comparative morphology of cercal structures in true crickets and their allies (Orthoptera, Ensifera): a phylogenetic perspective. Zoomorphology, 118(4), pp.235–243. Available at: http://link.springer.com/article/10.1007/s004350050072 [Accessed January 5, 2013].
Desutter-Grandcolas, L. et al., 2010. Evolution of the cercal sensory system in a tropical cricket clade (Orthoptera: Grylloidea: Eneopterinae): a phylogenetic approach. Biological Journal of the Linnean Society, 99(3), pp.614–631. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.2009.01371.x/abstract [Accessed January 5, 2013].
Eberhard, W. & Briceño, R., 1995. Functional Morphology of Male Cerci and Associated Characters in 13 Species of Tropical Earwigs (Dermaptera: Forficulidae, Labiidae, Carcinophoridae, Pygidicranidae). Smithsonian Institution, 55, p.63. Available at: http://orton.catie.ac.cr/cgi-bin/wxis.exe/?IsisScript=UACHBC.xis&method=post&formato=2&cantidad=1&expresion=mfn=087074.
Edwards, D.H., Heitler, W.J. & Krasne, F.B., 1999. Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends in Neurosciences, 22(4), pp.153–161. Available at: http://www.sciencedirect.com/science/article/pii/S016622369801340X [Accessed January 5, 2013].
Edwards, J.S. & Palka, J., 1974. The Cerci and Abdominal Giant Fibres of the House Cricket, Acheta domesticus. I. Anatomy and Physiology of Normal Adults. Proceedings of the Royal Society of London. Series B. Biological Sciences, 185(1078), pp.83–103. Available at: http://rspb.royalsocietypublishing.org/content/185/1078/83 [Accessed January 5, 2013].
Feder, J.L., 2005. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proceedings of the National Academy of Sciences, 102(suppl_1), pp.6573–6580. Available at: http://www.pnas.org/content/102/suppl.1/6573.short [Accessed January 5, 2013].
Flunkert, V., Fischer, I. & Schöll, E., 2013. Dynamics, control and information in delay-coupled systems: an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1999). Available at: http://rsta.royalsocietypublishing.org/content/371/1999/20120465 [Accessed August 20, 2013].
Fordyce, J.A., 2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. Journal of Experimental Biology, 209(12), pp.2377–2383. Available at: http://jeb.biologists.org/content/209/12/2377 [Accessed January 5, 2013].
Fordyce, J., 2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. Journal of Experimental Biology, 209(12), pp.2377–2383. Available at: http://jeb.biologists.org/content/209/12/2377.short.
Gabbutt, P., 1959. The bionomics of the wood cricket, Nemobius sylvestris (Orthoptera: Gryllidae). The Journal of Animal Ecology, 28(1), pp.15–42. Available at: http://www.jstor.org/stable/10.2307/2011.
Garland, T. & Kelly, S., 2006. Phenotypic plasticity and experimental evolution. Journal of Experimental Biology, 209, pp.2344–2361. Available at: http://jeb.biologists.org/content/209/12/2344.short.
Gnatzy, W. & Kämper, G., 1990. Digger wasp against crickets. II. An airborne signal produced by a running predator. Journal of Comparative Physiology A, 167(4). Available at: file:///Users/williambeaver/Library/Application%%20Support/Firefox/Profiles/71pn6usq.default/zotero/storage/9UTB8DNC/10.html#page-1 [Accessed January 5, 2013].
Gray, D.A. & Cade, W.H., 2000. Sexual selection and speciation in field crickets. Proceedings of the National Academy of Sciences, 97(26), pp.14449–14454. Available at: http://www.pnas.org/content/97/26/14449 [Accessed January 5, 2013].
Gregory, T., 2013. Animal Genome Size Database, Available at: http://www.genomesize.com/.
Gregory, T. & Andrews, C., 2009. The smallest avian genomes are found in hummingbirds. Proceedings of the Royal Society of London, 276(1674), pp.3753–3757. Available at: http://rspb.royalsocietypublishing.org/content/276/1674/3753.short.
Hartbauer, M. et al., 2010. The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats. PLoS ONE, 5(9), p.e12698. Available at: http://dx.doi.org/10.1371/journal.pone.0012698 [Accessed January 5, 2013].
Hartenstein, V., 2005. Development of Insect Sensilla. Elsevier BV. Available at: http://www.cm.colpos.mx/moodle/file.php/33/1.11.pdf.
Henry, L. & Roitberg, B., 2006. Covariance of phenotypically plastic traits induces an adaptive shift in host selection behaviour. Phil. Trans. R. Soc. B. Available at: http://rspb.royalsocietypublishing.org/content/273/1603/2893.short.
Horn, E. & Föller, W., 2001. Functional regeneration of a gravity sensory system during development in an insect (Gryllus bimaculatus). NeuroReport. Available at: http://journals.lww.com/neuroreport/Abstract/2001/08280/Functional_regeneration_of_a_gravity_sensory.19.aspx.
Irschick, D., 2003. Measuring performance in nature: implications for studies of fitness within populations. Integrative and Comparative Biology. Available at: http://icb.oxfordjournals.org/content/43/3/396.short.
Kanou, M. et al., 2004. Functional changes of cricket giant interneurons caused by chronic unilateral cercal ablation during postembryonic development. Zoological science, 21(1), pp.7–14. Available at: http://www.bioone.org/doi/abs/10.2108/0289-0003(2004)21%%255B7:FCOCGI%%255D2.0.CO%%253B2.
Kantner, M. & Yanchuk, S., 2013. Bifurcation analysis of delay-induced patterns in a ring of Hodgkin–Huxley neurons. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1999). Available at: http://rsta.royalsocietypublishing.org/content/371/1999/20120470 [Accessed August 20, 2013].
Keil, T.A., 1997. Functional morphology of insect mechanoreceptors. Microscopy Research and Technique, 39(6), pp.506–531. Available at: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0029(19971215)39:6<506::AID-JEMT5>3.0.CO;2-B/abstract [Accessed January 5, 2013].
König, H. & Varma, A., 2005. Intestinal microorganisms of termites and other invertebrates, Available at: http://books.google.com/books?hl=en&lr=&id=sbBG4-G7arQC&oi=fnd&pg=PA1&dq=%%2522Intestinal+microorganisms+of+termites+and+other+invertebrates.%%2522&ots=CfreAp3h79&sig=BOXBJQNC8UqrHctIQuO6GBggHf8.
Kopp, M. & Tollrian, R., 2003. Reciprocal phenotypic plasticity in a predator–prey system: inducible offences against inducible defences? Ecology Letters. Available at: http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2003.00485.x/full.
Levina, E. & Bickel, P., 2001. The Earth Mover’s distance is the Mallows distance: some insights from statistics. In Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings. pp. 251 –256 vol.2.
Libersat, F. & Duch, C., 2002. Morphometric analysis of dendritic remodeling in an identified motoneuron during postembryonic development. The Journal of Comparative Neurology, 450(2), pp.153–166. Available at: http://onlinelibrary.wiley.com/doi/10.1002/cne.10318/abstract [Accessed January 5, 2013].
Ling, H. & Okada, K., 2007. An Efficient Earth Mover’s Distance Algorithm for Robust Histogram Comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), pp.840 –853.
Ling, H. & Okada, K., 2012. earthmovdist - Wrapper to the Emd-L1 library, Available at: https://r-forge.r-project.org/R/?group_id=357.
Losos, J.B. et al., 2000. Evolutionary Implications of Phenotypic Plasticity in the Hindlimb of the Lizard Anolis Sagrei. Evolution, 54(1), pp.301–305. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2000.tb00032.x/abstract [Accessed January 5, 2013].
Magal, C. et al., 2006. Hair canopy of cricket sensory system tuned to predator signals. Journal of Theoretical Biology, 241(3), pp.459–466. Available at: http://www.sciencedirect.com/science/article/pii/S0022519305005412 [Accessed January 5, 2013].
Matsumoto, S.G. & Murphey, R.K., 1977. Sensory deprivation during development decreases the responsiveness of cricket giant interneurones. The Journal of Physiology, 268(2), pp.533–548.2. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283677/ [Accessed January 6, 2013].
Matsuoka, N. & Ishihara, M., 2010. Autotomy-induced life history plasticity in band-legged ground cricket Dianemobius nigrofasciatus. Entomological Science, 13(1), pp.1–7. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1479-8298.2009.00352.x/abstract [Accessed January 5, 2013].
Merzendorfer, H. & Zimoch, L., 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. journal of Experimental Biology. Available at: http://jeb.biologists.org/content/206/24/4393.short.
Miller, J.P. et al., 2011. Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus. PLoS ONE, 6(11), p.e27873. Available at: http://dx.doi.org/10.1371/journal.pone.0027873 [Accessed January 5, 2013].
Miner, B. et al., 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution. Available at: http://www.sciencedirect.com/science/article/pii/S0169534705002569.
Moczek, A.P., 2009. Developmental plasticity and the origins of diversity: a case study on horned beetles. In pp. 81 – 134.
Moczek, A. & Moczek, A., 2010. Phenotypic plasticity and diversity in insects. Phil. Trans. R. Soc. B. Available at: http://rstb.royalsocietypublishing.org/content/365/1540/593.short.
Moya-Laraño, J., 2011. Genetic variation, predator–prey interactions and food web structure. Phil. Trans. R. Soc. B. Available at: http://rstb.royalsocietypublishing.org/content/366/1569/1425.short.
Mulcahey, T., 2010. Autonomous cricket biosensors for acoustic localization. Georgia Tech. Available at: http://smartech.gatech.edu/handle/1853/33833.
Murphey, R.K. & Chiba, A., 1990. Assembly of the cricket cercal sensory system: Genetic and epigenetic control. Journal of Neurobiology, 21(1), pp.120–137. Available at: http://onlinelibrary.wiley.com/doi/10.1002/neu.480210109/abstract [Accessed January 5, 2013].
Nuesch, H., 1968. The Role of the Nervous System in Insect Morphogenesis and Regeneration. Annual Review of Entomology, 13(1), pp.27–44. Available at: http://www.annualreviews.org/doi/abs/10.1146/annurev.en.13.010168.000331 [Accessed January 5, 2013].
Orr, M. & Lukowiak, K., 2008. Electrophysiological and behavioral evidence demonstrating that predator detection alters adaptive behaviors in the snail Lymnaea. The Journal of Neuroscience. Available at: http://www.jneurosci.org/content/28/11/2726.short.
Palkovacs, E., Wasserman, B. & Kinnison, M., 2011. Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey. PLoS ONE. Available at: http://dx.plos.org/10.1371/journal.pone.0018879.
Persons, M. et al., 2001. Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Animal Behaviour. Available at: http://www.sciencedirect.com/science/article/pii/S000334720091594X.
Pfennig, D. & Murphy, P., 2002. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2002.tb01433.x/abstract.
Pigliucci, M. & Murren, C.J., 2003. Perspective: Genetic Assimilation and a Possible Evolutionary Paradox: Can Macroevolution Sometimes Be so Fast as to Pass Us By? Evolution, 57(7), pp.1455–1464. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2003.tb00354.x/abstract [Accessed January 5, 2013].
Price, T.D., Qvarnström, A. & Irwin, D.E., 2003. The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1523), pp.1433–1440. Available at: http://rspb.royalsocietypublishing.org/content/270/1523/1433 [Accessed January 5, 2013].
R Core Team, 2012. R: A Language and Environment for Statistical Computing, Available at: http://www.R-project.org/.
Rasband, W.S., 2012. ImageJ, Available at: http://imagej.nih.gov/ij/.
Relyea, R., 2001. The lasting effects of adaptive plasticity: predator-induced tadpoles become long-legged frogs. Ecology, 82(7). Available at: http://www.jstor.org/discover/10.2307/2680059?uid=3739856&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21101500219883.
Ricroch, A. et al., 2005. Evolution of genome size across some cultivated Allium species. Genome. Available at: http://www.nrcresearchpress.com/doi/abs/10.1139/g05-017.
Sakaguchi, D.S. & Murphey, R.K., 1983. The equilibrium detecting system of the cricket: Physiology and morphology of an identified interneuron. Journal of comparative physiology, 150(2), pp.141–152. Available at: http://link.springer.com/article/10.1007/BF00606364 [Accessed January 5, 2013].
Scheiner, S., 1993. Genetics and evolution of phenotypic plasticity. Annual review of ecology and systematics, 24, pp.35–68. Available at: http://www.jstor.org/stable/10.2307/2097172.
Shimozawa, T. & Kanou, M., 1984. Varieties of filiform hairs: range fractionation by sensory afferents and cereal interneurons of a cricket. Journal of Comparative Physiology A, 155(4), pp.485–493. Available at: http://link.springer.com/article/10.1007/BF00611913 [Accessed January 5, 2013].
Steiner, A.L., 1968. Behavioral Interactions Between Liris Nigra Van Der Linden (Hymenoptera: Sphecidae) and Gryllulus Domesticus L. (Orthoptera: Gryllidae). Psyche: A Journal of Entomology, 75(3), pp.256–273. Available at: http://psyche.entclub.org/75/75-256.html [Accessed January 5, 2013].
Stern, C., 1954. Two Or Three Bristles, McGraw-Hill.
Takuwa, H. & Kanou, M., 2007. Sensitive Period in Which Walking Affects Recovery of Direction of Wind-Evoked Escape in the Cricket Gryllus bimaculatus. Zoological Science, 24(4), pp.331–337. Available at: http://www.bioone.org/doi/abs/10.2108/zsj.24.331 [Accessed January 6, 2013].
Tétard-Jones, C., Kertesz, M.A. & Preziosi, R.F., 2011. Quantitative trait loci mapping of phenotypic plasticity and genotype–environment interactions in plant and insect performance. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1569), pp.1368–1379. Available at: http://rstb.royalsocietypublishing.org/content/366/1569/1368 [Accessed January 6, 2013].
Theunissen, F.E. & Miller, J.P., 1991. Representation of sensory information in the cricket cercal sensory system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons. Journal of Neurophysiology, 66(5), pp.1690–1703. Available at: http://jn.physiology.org/content/66/5/1690 [Accessed January 6, 2013].
Trussell, G. & Smith, L., 2000. Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proceedings of the National Academy of Science. Available at: http://www.pnas.org/content/97/5/2123.short.
Vardi, N. & Camhi, J.M., 1982. Functional recovery from lesions in the escape system of the cockroach. Journal of comparative physiology, 146(3), pp.299–309. Available at: http://link.springer.com/article/10.1007/BF00612701 [Accessed January 6, 2013].
Via, S. et al., 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution. Available at: http://www.sciencedirect.com/science/article/pii/S0169534700890618.
Weisser, W.W., Braendle, C. & Minoretti, N., 1999. Predator-induced morphological shift in the pea aphid. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1424), pp.1175–1181. Available at: http://rspb.royalsocietypublishing.org/content/266/1424/1175 [Accessed January 6, 2013].
Werner, E. & Peacor, S., 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology, 84(5), pp.1083–1100. Available at: http://www.jstor.org/discover/10.2307/3107918?uid=3739856&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21101500219883.
West-Eberhard, M.J., 2003. Developmental Plasticity and Evolution, Oxford University Press.
West-Eberhard, M., 1989. Phenotypic plasticity and the origins of diversity. Annual review of ecology and systematics. Available at: http://www.jstor.org/stable/10.2307/2097092.
Wiese, K., 1976. Mechanoreceptors for near-field water displacements in crayfish. Journal of Neurophysiology, 39(4), pp.816–833. Available at: http://jn.physiology.org/content/39/4/816 [Accessed January 6, 2013].
Wissinger, S.A., 1989. Seasonal variation in the intensity of competition and predation among dragonfly larvae. Ecology, 70, pp.1017–1027.
Yeh, P.J. & Price, T.D., 2004. Adaptive phenotypic plasticity and the successful colonization of a novel environment. The American naturalist, 164(4), pp.531–542. Available at: http://www.jstor.org/stable/10.1086/423825.
Zimmer, C. et al., 2011. Behavioural Adjustment in Response to Increased Predation Risk: A Study in Three Duck Species. PLoS ONE. Available at: http://dx.plos.org/10.1371/journal.pone.0018977.